Covers in Uniform Intersecting Families and a Counterexample to a Conjecture of Lovász

نویسندگان

  • Peter Frankl
  • Katsuhiro Ota
  • Norihide Tokushige
چکیده

We discuss the maximum size of uniform intersecting families with covering number at least . Among others, we construct a large k-uniform intersecting family with covering number k, which provides a counterexample to a conjecture of Lov asz. The construction for odd k can be visualized on an annulus, while for even k on a Mobius band.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the oriented perfect path double cover conjecture

‎An  oriented perfect path double cover (OPPDC) of a‎ ‎graph $G$ is a collection of directed paths in the symmetric‎ ‎orientation $G_s$ of‎ ‎$G$ such that‎ ‎each arc‎ ‎of $G_s$ lies in exactly one of the paths and each‎ ‎vertex of $G$ appears just once as a beginning and just once as an‎ ‎end of a path‎. ‎Maxov{'a} and Ne{v{s}}et{v{r}}il (Discrete‎ ‎Math‎. ‎276 (2004) 287-294) conjectured that ...

متن کامل

Uniform Intersecting Families with Covering Number Restrictions

It is known that any k-uniform family with covering number t has at most k t t-covers. In this paper, we give better upper bounds for the number of t-covers in k-uniform intersecting families with covering number t.

متن کامل

A New Construction of Non-Extendable Intersecting Families of Sets

In 1975, Lovász conjectured that any maximal intersecting family of k-sets has at most b(e− 1)k!c blocks, where e is the base of the natural logarithm. This conjecture was disproved in 1996 by Frankl and his co-authors. In this short note, we reprove the result of Frankl et al. using a vastly simplified construction of maximal intersecting families with many blocks. This construction yields a m...

متن کامل

Covers in 5-uniform intersecting families with covering number three

Let k be an integer. It is known that the maximum number of threecovers of a k-uniform intersecting family with covering number three is k − 3k + 6k − 4 for k = 3, 4 or k ≥ 9. In this paper, we prove that the same holds for k = 5, and show that a 5-uniform intersecting family with covering number three which has 76 three-covers is uniquely determined.

متن کامل

Fractional aspects of the Erdös-Faber-Lovász Conjecture

The Erdős-Faber-Lovász conjecture is the statement that every graph that is the union of n cliques of size n intersecting pairwise in at most one vertex has chromatic number n. Kahn and Seymour proved a fractional version of this conjecture, where the chromatic number is replaced by the fractional chromatic number. In this note we investigate similar fractional relaxations of the Erdős-Faber-Lo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Comb. Theory, Ser. A

دوره 74  شماره 

صفحات  -

تاریخ انتشار 1996